技术突破进入新阶段:“塑料”太阳能电池
瑞士电子与微技术中心(CSEM)巴西公司日前宣布,他们在“塑料”太阳能电池研究上获得突破,以有机聚合体替代单晶硅制造太阳能电池的技术已进入商业开发阶段。受此推动,可发生光电效应的有机聚合体薄膜产业将面临大发展。尽管国内上市公司尚未涉及 该产业,但太阳能电池背板膜的需求会受到带动。

塑料太阳能电池研究获得突破
瑞士电子与微技术中心(CSEM)巴西公司日前宣布,他们在“塑料”太阳能电池研究上获得突破,以有机聚合体替代单晶硅制造太阳能电池的技术已进入商业开发阶段。
所谓“塑料”太阳能电池,就是将可发生光电效应的有机聚合体薄膜,印在碳基板上并连接成为电池组。与传统单晶硅太阳能电池相比,“塑料”太阳能电池具有轻巧、廉价的显着特点,并且生产过程中污染较小。
据“美洲大地”网站报道,虽然欧美国家已开发出类似技术,但发电功率小,只适用于给手机等小型电器供电。CSEM巴西公司技术人员表示,他们的新技术可制造较大面积的“塑料”太阳能电池板,以满足普通家庭用电需求。如果在建筑顶棚等开阔空间安装这种太阳能电池板,发电规模将非常可观。
CSEM巴西公司称,“塑料”太阳能电池的成本远远低于传统的太阳能电池,因而已投入到商业开发阶段,同时希望引进私人企业的参与和投资。
5-10年内有望大规模商用
据报道,英国科学家的一项最新研究或能加速塑料太阳能电池的应用步伐,使其在5到10年内实现商用。这种太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保,可大规模应用。有专家认为,这或将对传统晶硅类太阳能电池造成冲击。
由英国谢菲尔德大学和剑桥大学的研究人员进行的这项研究,借助英国卢瑟福阿普尔顿实验室的ISIS中子源和“钻石光源”对塑料太阳能电池的内部结构进行探测,并以此为依据对相关工艺作出改进,提高了太阳能电池的整体性能。
新方法并未采用昂贵的技术来制造特定的半导体结构,而是通过批量印制工艺,用两种不同的感光物质在塑料薄膜上“印”上了一层厚度只有60纳米的电路结构。整个制造过程都在较低的温度下进行,可采用“卷对卷印刷”技术大规模生产,且该工艺在总体上可显着降低能耗和材料浪费。
此外,与传统晶硅类太阳能电池切割封装工艺相比,新技术的生产效率更高,一次印刷就可生产出几个足球场大小的太阳能电池,而且大规模生产的成本也将远低于传统晶硅类太阳能电池。在使用上,这种太阳能电池重量轻、易运输、可卷曲,在安装时甚至可以直接附着在建筑物表面而不占用额外空间。研究人员称,这种聚合物太阳能电池的转化效率目前可以达到7%-8%,下一步有望提高到10%以上。
[NextPage][/NextPage]
谢菲尔德大学教授理查德。琼斯说,今后50年,传统化石能源将无法满足世界日渐增长的能源需求,目前来看,在可再生能源中最有希望取代化石能源的就是太阳能,但成本高、转化率低一直限制着太阳能技术的应用。新技术让太阳能电池的低成本生产和大规模铺设成为了现实,为新型太阳能电池的制造和可再生能源的发展铺平了道路。琼斯预测,在未来5到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟,并实现大规模商用。
污水尿液能发电 微生物燃料电池技术获突破
微生物燃料电池并不是一个新概念。早在1910年,英国植物学家马克˙比特首次发现了细菌的培养液能够产生电流,他用铂作为电极成功制造出了世界第一块微生物燃料电池。最近,美国宾夕法尼亚州立大学环境工程系教授Bruce Logan的研究组尝试开发微生物燃料电池,试图将未经处理的污水转变成干净的水,同时发电。该项技术未来还可能实现海水淡化。
科技的发展能令许多尘封的梦想照进现实。一块看上去如此“微小”的电池,究竟隐含了怎样“巨大”的能量?

污水中蕴含电能价值
目前,污水处理费时、费钱,还消耗大量能量,基本是个只投入不产出的行业,成为各国政府头疼的一大难题。有数据称,5%的电力消费被用于污水处理。因此,又能净化水质、又能发电的微生物燃料电池一旦出现,将有望把污水处理变成一个有利可图的产业。Bruce Logan教授认为,未来污水处理厂通过使用微生物燃料电池不仅可以满足自身用电,还能向外输电。
虽然目前还没有商业产品问世,但多伦多大学的科学家戴维˙伯格雷曾估计,污水中潜在的电能价值是其处理成本的10倍。Bruce Logan教授则认为,只要能利用潜在电能的1/20,污水处理厂就可以解决污水处理成本。不过他估计,微生物燃料电池实现工业应用还需5~10年。在现阶段,突破工业应用的关键问题仍然是如何继续降低成本、提高电池性价比。
据悉,在早期的研究中,Bruce Logan所在的研究小组使用了大量昂贵的材料,如昂贵的石墨电极、聚合物以及铂等贵金属。但其最新的电池系统已经使用了更便宜并且更环保的材料。“我们现在已经可以不用任何贵金属了。”Bruce Logan教授说。
[NextPage][/NextPage]
尚处于实验室阶段 但应用前景广阔
中国科学院广州能源所研究员孔晓英在接受采访时表示,微生物燃料电池目前还处于实验室研究阶段。但经过科研工作者的不懈努力,它在各个方面都取得了显着突破。
微生物燃料电池的应用范围相当广泛,塬料已由简单的葡萄糖、乙酸发展到各种废水、农业和畜牧废弃物、城市生活有机垃圾、海水河水沉积物等复杂的材料。在功能上,也由单纯的产电拓展到处理废水、辅助产氢、海水淡化、土壤修复及CO2的捕获等。“微生物燃料电池有很多不同的‘模样’,从两室到阴极和质子膜压合在一起的单室,从有膜到无膜,从电池单体到电池组,小到纽扣电池,大到大型柱状电池,无不体现了科研人员丰富的想象力及创造力。”孔老师说。
据孔老师介绍,微生物燃料电池与其他电池相比,具有燃料来源多样化、操作条件温和、无需能量输入、能量利用的高效性、生物相容性等独有特点。但是与化学燃料电池相比,微生物燃料电池的功率输出大约低4个数量级。
“虽然微生物燃料电池在电能输出方面没有竞争优势,但是在很多方面有很好的应用前景,可以发展为廉价、长效的电能系统。将废水中的有机污染物转变成电能,能为边远地区或无人的地方提供微能源,修复土壤,淡化盐水,协助产氢,它还可以成为新型的人体起搏器、生物传感器等。”孔老师说,“然而,如何集成各方面的优势技术,使微生物燃料电池得到广泛应用是亟待解决的问题。另外,利用复杂有机物产电的机制、微生物群落代谢网络等问题仍需深入研究。”
优势:将有机物“变废为宝”
英国布里斯托尔机器人实验室的研究人员克里斯˙梅尔赫什表示,从理论上来说,只需要找到合适的微生物,微生物燃料电池可由任何有机物质来驱动。

- 最新评论
- 我的评论